

Available online at www.sciencedirect.com

ScienceDirect

Thermochimica Acta 450 (2006) 2–4

thermochimica acta

www.elsevier.com/locate/tca

Synthesis, characterization and calorimetric study of zinc group halide adducts with aniline

Umberto G. da Silva Jr.^a, Ótom A. de Oliveira^b, Robson F. de Farias^{c,*}

^a Centro Federal de Educação Tecnológica da Paraíba, Av. 1[°] de Maio 720, Jaguaribe, João Pessoa, Paraíba, Brazil ^b *Departamento de Qu´ımica, Universidade Federal do Rio Grande do Norte, Cx. Postal 1662, 59078-970 Natal, Rio Grande do Norte, Brazil* ^c *Departamento de Qu´ımica, Universidade Federal de Roraima, Cx. Postal 167, 69301-970 Boa Vista, Roraima, Brazil*

Available online 29 April 2006

Abstract

The adducts $ZnCl_2$ ·2an, $ZnBr_2$ ·1.5an, $CdCl_2$ ·2an, $CdBr_2$ ·2an, CdI_2 ·2an, $HgCl_2$ ·2an and $HgBr_2$ ·2an (where an = aniline) were synthesized and characterized by elemental analysis, infrared spectroscopy and thermogravimetry and solution calorimetry. Considering the $\Delta_r H_m^{\theta}$ as well as the *D*(*M* − *N*) values, the following acidity sequence can be established: Zn > Cd > Hg which can be also referring to the hardness of the metal halides. The $\Delta_r H_{\text{m}}^{\theta}$ values (kJ mol⁻¹) for the reaction MX₂ (c) + nL (l) = MX₂·nL (c) are: -82.4 ± 3.6 (ZnCl₂·2an), -77.1 ± 0.4 (ZnBr₂·1.5an), -45.3 ± 1.4 (CdCl2·2an), −45.2 ± 0.7 (CdBr2·2an), −60.3 ± 0.1 (CdI2·2an) and −41.4 ± 6.3 (HgCl2·2an). In the same sequence of compounds, the *D*(*M* − *N*) values (kJ mol−1) are: 143.6, 157.3, 141.2, 126.2, 126.9 and 89.7, respectively. © 2006 Elsevier B.V. All rights reserved.

Keywords: Zinc group halides; Adducts; Thermochemistry

1. Introduction

The research on the thermochemistry of adducts it is still an exciting area taking into account that, as demonstrated by using thermochemical data for zinc adducts, there is a very close relationship between calorimetric, thermogravimetric and infrared spectroscopic data for adducts [1] and so, the thermochemical investigation can provide new insights on the physical–chemical behavior and chemical bonding in such compounds. Furthermore, as verified by using calorimetric data for adducts of zinc and arsenic salts [2,3] [cal](#page-2-0)orimetric data can be used to provide more reliable and precise basicity scales, than those provided by only using spectroscopic data [3]. In this connection, and taking into account the different hardness values of the involved metal [salts, se](#page-2-0)veral group 12 salts adducts have been investigated from a thermochemical point of view [4–6]. The present work is insert in this context a[nd is](#page-2-0) referring to the synthesis, characterization and calorimetric investigation of the following zinc group halides adducts with aniline: $ZnCl_2$ -2an, $ZnBr_2$ -1.5an, CdCl₂·[2an,](#page-2-0) CdBr₂·2an, CdI₂·2an, HgCl₂·2an and HgBr₂·2an, where an $=$ aniline.

2. Experimental

All the reagents used in this work were of analytical grade end they were used without further purification.

All adducts were synthesized by direct mixture of ligand (aniline) and zinc group metal halides. The obtained mixture was then stirred magnetically for time intervals from 0.5 to 5 h. The ligand was added in excess in order to guarantee the "saturation" of the coordination sphere of the metal cation. The compounds $CdI₂$ -2an and HgCl₂·2an were aged for 30 and 10 days, respectively. The formed compounds were washed with ethyl ether and dried under vacuum at room temperature.

The metal and halide contents were determined by complexometric EDTA titration and potentiometric AgNO₃ titration, respectively. The melting point intervals were measured in a Quimis Metrohm Herisau equipment. The thermogravimetric curves were obtained in a TGA 7 Perkin-Elmer equipment with a nitrogen flow of 17 cm³ min⁻¹ atmosphere and a heating rate of 10 ◦C min−1. The infrared spectra were obtained in KBr matrix in the 4000–200 cm−¹ range by using a Perkin-Elmer equipment model 16 FPC-IR.

The calorimetric measurements were performed by using a isoperibolic calorimeter constructed in the Department of Chemistry of the Universidade Federal do Rio Grande do Norte that

[∗] Corresponding author. Tel.: +55 95 81118206.

E-mail address: robsonfarias@pesquisador.cnpq.br (R.F. de Farias).

^{0040-6031/\$ –} see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2006.04.010

has been previously described [6]. Ethanol was employed as calorimetric solvent.

To obtain the energetic information about the prepared adducts, a complete set of thermochemical parameters were calculated. The stand[ard](#page-2-0) [m](#page-2-0)olar reaction enthalpy in condensed phase: MX_2 (cr) + nL (cr) = $MX_2 \cdot nL$ (cr); $\Delta_r H_m^{\theta}$, can be calculated by using the following thermochemical cycle:

$$
MX_2 (cr) + solvent = Sol A; \t\t A_1 H_m^{\theta}
$$

 $SolA + nL (cr) = SolB;$ $\Delta_2 H_{\rm m}^{\theta}$

 $MX_2 \cdot nL (cr) + solvent = Sol C;$ $\Delta_3 H_{\rm m}^{\theta}$

$$
\text{Sol A} = \text{Sol C}; \qquad \Delta_4 H_{\text{m}}^{\theta}
$$

In each calorimetric reaction a strict control of stoichiometry was maintained to ensure an equivalence of the initial and final stages of the reactions. Since the thermodynamic state of the second and third reactions is the same, the value for $\Delta_4 H_{\text{m}}^{\theta}$ is zero. So, $\Delta_r H_{\text{m}}^{\theta}$ can be calculated by Hess's law, through the equation: $\Delta_r H_{\text{m}}^{\hat{\theta}} = \Delta_1 H_{\text{m}}^{\theta} + \Delta_2 H_{\text{m}}^{\theta} - \Delta_3 H_{\text{m}}^{\theta}$.

The values for the enthalpy of decomposition $(\Delta_{\text{D}}H_{\text{m}}^{\theta})$ and the lattice enthalpy $(\Delta_M H_m^{\theta})$ which corresponded to the following reactions: $MX_2 \cdot nL$ (cr) = MX_2 (cr) + nL (g); $MX_2 \cdot nL$ $(cr) = MX_2(g) + nL(g)$, respectively, were calculated applying the equations: $\Delta_D H_m^{\theta} = -\Delta_r H_m^{\theta} + n \Delta_{\text{cr}}^{\text{g}} H_m^{\theta}$ (L) and $\Delta_M H_m^{\theta} =$

 $\Delta_{\text{D}}H_{\text{m}}^{\theta} + \Delta_{\text{cr}}^{\text{g}}H_{\text{m}}^{\theta}$ (MX₂). The acid–base enthalpy reaction in the gaseous phase, $\Delta_g H_m^{\theta}$, according to the reaction: MX_2 (g) + nL (g) = MX₂·nL (g) , can be calculated by the expression: $\Delta_g H_m^{\theta} = \Delta_M H_m^{\theta} + \Delta_{\text{cr}}^g H_m^{\theta}$ (L) [7]. From the $\Delta_g H_m^{\theta}$ values the mean metal-ligand bond dissociation enthalpy can be calculated through the expression: $\langle D \rangle$ (M-L) = $\Delta_g H_m^{\theta}/n$, where *n* is the number of ligands [7].

As auxiliary dat[a fo](#page-2-0)r the calculations, the following enthalpies of sublimation (kJ mol⁻¹) were considered: ZnCl₂ (149), ZnBr₂ (131), CdCl₂ (181.2), CdBr₂ (151.5), CdI₂ (137.7), $HgCl₂$ (82.[2\) and](#page-2-0) $HgBr₂$ (84.2)[8] and the vaporization enthalpy of aniline (55.8) [9].

3. Results and discussion

Th[e ex](#page-2-0)perimental analytical data are in good agreement $(\pm 3\%)$ with the proposed general formulas. The measured melting points intervals, general formulas and the main infrared absorption bands for aniline and its compounds with the zinc group halides are shown in Table 1. As can be verified, the cadmium chloride and cadmium bromide adducts are the most stable from a thermal point of view, suggesting that, for these compounds, the intermolecular forces are stronger than to the other ones. Such fact could be related with the fact that many cadmium compounds polymerize [10].

The negative shifts observed for several bands are indicative of coordination trough nitrogen of the ligand [11].

Table 1

Melting temperatures and main infrared bands (cm⁻¹) for aniline and its adducts with group 12 halides

Compound	Melting temperature $(^{\circ}C)$	$\nu(NH)_{\rm as}$	$\nu(NH)_{s}$	$\nu(M-N)$	$\nu(M-X)$	$\nu(CN)$
An		3448-3390	3226	$\hspace{0.1mm}-\hspace{0.1mm}$	—	1274
ZnCl ₂ ·2an	$258 - 265$	3262	3220	$406 - 362$	294-272	1218
ZnBr ₂ ·1.5an	$260 - 266$	3262	3218	$402 - 356$	$230 - 245$	1216
CdCl ₂ ·2an	>321	3340	3292	374-302	$218 - 226$	1240
CdBr ₂ ·2an	>321	3306	3244	$366 - 318$		1238
CdI ₂ ·2an	$175 - 184$	3298	3234	370	$-$	1227
HgCl ₂ ·2an	$141 - 143$	3584	3526	396	206	1270
HgBr ₂ ·2an	$107 - 108$	3526	3282	365	203	1218

Table 2 Thermogravimetric results for group 12 halide adducts with aniline

Process	$\Delta H_{\rm diss}$ (kJ mol ⁻¹)
an (l) + EtOH \rightarrow an (sol)	0.24 ± 0.06
$ZnCl_2$ (s) + an (sol) \rightarrow $ZnCl_2$ 2an (sol)	-46.70 ± 0.58
$ZnBr_2(s) + 3/2an (sol) \rightarrow ZnBr_2 \cdot 1.5an (sol)$	-53.18 ± 0.14
$ZnCl_2 \cdot 2an(s) + EtOH \rightarrow ZnCl_2 \cdot 2an(sol)$	$-36.05 + 3.57$
$ZnBr2·1.5an (s) + ZnBr2·1.5an (sol)$	$-24.25 + 0.39$
$CdCl_2(s) + 2an (sol) \rightarrow CdCl_2 \cdot 2an (sol)$	-2.28 ± 0.33
CdI ₂ (s) + 2an (sol) \rightarrow CdI ₂ .2an (sol)	-7.58 ± 0.30
$CdBr_2(s) + 2an (sol) \rightarrow CdBr_2.2an (sol)$	$-12.45 + 0.84$
$CdCl_2 \cdot 2an(s) + EtOH \rightarrow CdCl_2 \cdot 2an(sol)$	$-43.39 + 1.33$
$CdBr_2.2an(s) + EtOH \rightarrow CdBr_2.2an(sol)$	$-37.93 + 0.64$
CdI_2 -2an (s) + EtOH \rightarrow CdI ₂ -2an (sol)	$-48.23 + 0.50$
$HgCl_2(s) + 2an (sol) \rightarrow HgCl_2.2an (sol)$	-4.47 ± 0.27
$HgCl_2$ -2an (s) + EtOH \rightarrow HgCl ₂ -2an (sol)	$-46.16 + 0.34$

Table 4 Thermochemical parameters for group 12 halide adducts with aniline

A summary of the thermogravimetry data are shown in Table 2. In all compounds the elimination of ligand molecules occurs in a single step of mass lost. This suggests that, from an energetic point of view, the two ligand molecules are located at energetically equivalent coordination sites. With the exception of zinc chloride, all salts sublimate completely after the release of ligand molecules. For $ZnCl₂$ the final residue is composed by zinc oxychloride. For mercury compounds which exhibit a large single step of mass loss, two phenomena are possible: the simultaneous release of gaseous aniline molecules and mercury halide sublimation, or the sublimation of the mercury halideaniline compound itself.

The thermochemical data are summarized in Tables 3 and 4. For the cadmium halide adducts the metal-ligand bond enthalpy is greater for the chloride compound and that the Br and I compounds exhibits very closer metal-ligand enthalpy values. The infrared data (Table 1) shown that for cadmium adducts, the $v(NH)_{as}$ band exhibits "progressive" negative (cm⁻¹) with respect to the free ligand from Cl to I: 3340 (Cl), 3306 (Br) and 3298 (I), and that the Br and I compounds exhibit very close shift val[ues.](#page-1-0) [So,](#page-1-0) [i](#page-1-0)t is possible that larger negative shifts of the $v(NH)_{as}$ band are associated with weaker metal-ligand bonds. The same hypothesis it can be pointed out for the $v(NH)$ _s band.

Based on the dissolution enthalpy values shown in Table 3. The cadmium halides adducts are those with higher dissolution enthalpy, suggesting that these compounds exhibit higher intermolecular forces, as also suggested by the melting temperatures. On the other hand, comparing only the chloride compounds, can be verified that the dissolution enthalpy values follows the sequence: $Hg > Cd > Zn$.

Considering the $\Delta_r H_{\text{m}}^{\theta}$ as well as the *D*(*M* − *N*) values in Table 4, the following acidity sequence for the halides can be established: $Zn > Cd > Hg$ which is also related with the hardness of the metal halides. That is, higher $\Delta_r H_{\text{m}}^{\theta}$ and $D(M-N)$ values are related with harder metal halides. Considering only the cadmium adducts, the higher $\Delta_r H_{\text{m}}^{\theta}$ value is observed for the iodide compound, that is, larger and softer anions favor higher values of $\Delta_r H_{\text{m}}^{\theta}$, probably due to the fact that higher anions allows a better insertion of the ligand into the crystalline network of the metal salt. Such better insertion is not related, apparently, with a shorter metal-ligand distance, since from Br to I compounds, higher values of $\Delta_r H_{\text{m}}^{\theta}$ are not associated with higher values of *D*(*M* − *N*).

References

- [1] R.F. de Farias, C. Airoldi, H. Scatena Jr, Polyhedron 21 (2002) 1677.
- [2] R.F. de Farias, C. Airoldi, J. Thermal Anal. Cal. 67 (2002) 579.
- [3] R.F. de Farias, Quim. Nova 26 (2003) 213.
- [4] M.F.V. de Moura, O.A. de Oliveira, R.F. de Farias, Thermochim. Acta 405 (2004) 219.
- [5] R.F. de Farias, A.O. da Silva, U.G. da Silva Jr., Thermochim. Acta 406 (2003) 245.
- [6] R.F. de Farias, O.A. de Oliveira, Quim. Nova 19 (1996) 100.
- [7] C. Airoldi, A.P. Chagas, Coord. Chem. Rev. 119 (1992) 29.
- [8] O.A. de Oliveira, A.P. Chagas, C. Airoldi, Inorg. Chem. 22 (1983) 136.
- [9] CRC Handbook of Chemistry and Physics, 85th ed., CRC Press, Boca Raton, Florida, 2003.
- [10] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Butterworth-Heinemann, Cambridge, 1984.
- [11] D.T. Moore, J. Oomens, J.R. Eyler, G. von Helden, G. Meijer, R.C. Dunbar, J. Am. Chem. Soc. 127 (2005) 7243.